

Carpenter 2205 Stainless

Identification

UNS Number	
• S31803	
DIN Number	

• 1.4462

Type Analysis

	7 1		
Carbon (Maximum)	0.03 %	Manganese (Maximum)	2.00 %
Phosphorus (Maximum)	0.030 %	Sulfur (Maximum)	0.020 %
Silicon (Maximum)	1.00 %	Chromium	21.00 to 23.00 %
Nickel	4.50 to 6.50 %	Molybdenum	2.50 to 3.50 %
Nitrogen	0.08 to 0.20 %	Iron	Balance

General Information

Description

Carpenter 2205 stainless is a duplex stainless steel that has a microstructure consisting of austenite and ferrite phases. This duplex microstructure and the chemical composition of Carpenter 2205 stainless results in an excellent combination of strength and corrosion resistance.

Carpenter 2205 stainless has twice the annealed yield strength of typical austenitic stainless steels, like Type 304 and 316. In the hot rolled unannealed condition, yield strength of 75 ksi (518 MPa) or higher can be achieved for bar diameters up to 1.375 in. (34.925mm).

Carpenter 2205 stainless possesses good resistance to general corrosion in many acid environments and, has excellent resistance to chloride stress corrosion cracking, pitting and crevice corrosion.

Applications

Rebar has been a primary application for Carpenter 2205 stainless. Specific rebar applications have included bridge decks, barrier and retaining walls, anchoring systems, chemical plant infrastructure, coastal piers and wharves, bridge parapets, sidewalks and bridge piling. The higher strength capability, 75 ksi (518 MPa) minimum yield strength, of Carpenter 2205 stainless rebar is an added economical advantage.

Other applications for Carpenter 2205 stainless have included bridge tie wire and dowels; oil and gas production equipment, such as valves, fittings, shafts, and pump parts; heat exchangers in chemical and pulp and paper plants; and brewery tanks.

Elevated Temperature Use

Carpenter 2205 stainless is subject to 885 embrittlement when exposed for extended times between about 700 and 1000°F (371 and 538°C).

The alloy is also subject to precipitation of sigma phase when exposed between about 1250 and 1550°F (677 and 843°C) for extended time. Sigma phase increases strength and hardness, but decreases ductility and corrosion resistance.

Corrosion Resistance

Compared to conventional austenitic stainless steels, like Type 304 and 316, Carpenter 2205 stainless has superior resistance in most oxidizing and reducing acids; superior chloride pitting and crevice corrosion resistance, due to higher chromium, molybdenum and nitrogen content and superior resistance to chloride stress corrosion cracking due to its duplex microstructure.

Carpenter 2205 stainless has good intergranular corrosion in the as-annealed and as-weld conditions due to its low carbon content. Some intergranular attack may occur in the hot rolled unannealed condition.

For optimum corrosion resistance, surfaces must be free of scale and foreign particles and finished parts should be passivated.

Important Note: The following 5-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

Properties

Physical Properties	
Specific Gravity	7.00
Annealed	7.80
As Rolled	7.82
Density Annealed	0.2820 lb/in³
As Rolled	0.2830 lb/in³
Mean Coefficient of Thermal Expansion	0.2030 ID/III-
77.00 °F, 122.0 °F, Annealed	6.22 x 10 ⁻⁶ in/in/°F
77.00 °F, 122.0 °F, Hot Rolled	7.02 x 10 ⁻⁶ in/in/°F
77.00 °F, 212.0 °F, Annealed	7.11 x 10 ⁻⁶ in/in/°F
77.00 °F, 302.0 °F, Annealed	7.29 x 10 ⁻⁶ in/in/°F
77.00 °F, 212.0 °F, Hot Rolled	7.48 x 10 ⁻⁶ in/in/°F
77.00 °F, 392.0 °F, Annealed	7.53 x 10 ⁻⁶ in/in/°F
77.00 °F, 302.0 °F, Hot Rolled	7.70 x 10 ⁻⁶ in/in/°F
77.00 °F, 482.0 °F, Annealed	7.72 x 10 ⁻⁶ in/in/°F
77.00 °F, 392.0 °F, Hot Rolled	7.82 x 10 ⁻⁶ in/in/°F
77.00 °F, 572.0 °F, Annealed	7.86 x 10 ⁻⁶ in/in/°F
77.00 °F, 662.0 °F, Annealed	7.97 x 10 ⁻⁶ in/in/°F
77.00 °F, 752.0 °F, Annealed	7.99 x 10 ⁻⁶ in/in/°F
77.00 °F, 482.0 °F, Hot Rolled	8.04 x 10 ⁻⁶ in/in/°F
77.00 °F, 842.0 °F, Annealed	8.12 x 10 ⁻⁶ in/in/°F
77.00 °F, 572.0 °F, Hot Rolled	8.17 x 10 ⁻⁶ in/in/°F
77.00 °F, 932.0 °F, Annealed	8.23 x 10 ⁻⁶ in/in/°F
77.00 °F, 662.0 °F, Hot Rolled	8.26 x 10 ⁻⁶ in/in/°F
77.00 °F, 1012 °F, Annealed	8.30 x 10 ⁻⁶ in/in/°F
77.00 °F, 752.0 °F, Hot Rolled	8.34 x 10 ⁻⁶ in/in/°F
77.00 °F, 842.0 °F, Hot Rolled	8.44 x 10 ⁻⁶ in/in/°F
77.00 °F, 1112 °F, Annealed	8.44 x 10 ⁻⁶ in/in/°F
77.00 °F, 932.0 °F, Hot Rolled	8.53 x 10 ⁻⁶ in/in/°F
77.00 °F, 1012 °F, Hot Rolled	8.57 x 10 ⁻⁶ in/in/°F
77.00 °F, 1202 °F, Annealed	8.57 x 10 ⁻⁶ in/in/°F
77.00 °F, 1112 °F, Hot Rolled	8.68 x 10 ⁻⁶ in/in/°F
77.00 °F, 1292 °F, Annealed	8.77 x 10 ⁻⁶ in/in/°F
77.00 °F, 1202 °F, Hot Rolled	8.78 x 10 ⁻⁶ in/in/°F
77.00 °F, 1292 °F, Hot Rolled	8.92 x 10 ⁻⁶ in/in/°F

Mean Coefficient of Thermal Expansion - Carpenter 2205 Stainless

0.5" (12.5 mm) diameter rebar

Test Ten	nperature	Hot Rolled	Condition		Annealed Condition			
77°F to	77°F to 25°C to		10 ⁻⁶ /°C	10 ⁻⁶ /°F	10 ⁻⁶ /°C			
122	50 7.02		12.64	6.22	11.20			
212	212 100		13.47	7.11	12.48			
302	150	7.70	13.86	7.29	13.12			
392	200	7.82	14.07	7.53	13.56			
482	250	8.04	14.47	7.72	13.89			
572	300	8.17	14.71	7.86	14.14			
662	350	8.26	14.87	7.97	14.34			
752	400	8.34	15.01	7.99	14.39			
842	450	8.44	15.20	8.12	14.62			
932	500	8.53	15.36	8.23	14.82			
1012	550	8.57	15.42	8.30	14.94			
1112			15.63	8.44	15.19			
1202	650	8.78	15.81	8.57	15.42			
1292	700	8.92	16.11	8.77	15.79			

Annealed 1950°F (1066°C) for 1 hour and water quenched. Dilatometer specimens were .250" (6.4 mm) sq. x 2" (50.8 mm) long.

Magnetic Properties

In the annealed and hot rolled conditions, Carpenter 2205 stainless is ferromagnetic.

Typical Mechanical Properties

CVN Impact Data at Various Test Temperatures – Carpenter 2205 Stainless 0.5" (12.5 mm) diameter rebar

0	Test Ten	perature	Charpy V-Notch Impact Strength		
Condition	°F	°C	ft-lbs	Joules	
As-Rolled	70	21	92	125	
Annealed	70	21	120	163	
As-Rolled	32	0	90	122	
Annealed	32	0	104	141	
As-Rolled	-100	-73	89	121	
Annealed	-100	-73	96	131	

Annealed 1950°F (1066°C) for 1 hour and water quenched.

Sub-size specimens 0.197" x 0.394" (5 mm x 10 mm) per ASTM E23.

Mechanical Properties at Various Test Temperatures – Carpenter 2205 Stainless

0.5" (12.5 mm) diameter rehar

U.S (12.5 M														
				0.2%			% 	% D-4						
	rempe	erature	Yield S	crengtn	rensile	Strength	Elonga- tion	Reduction						
	°F	°C	ksi	ksi MPa ksi MPa		ksi MPa		of Area						
As-Rolled	-100	-73	127	875	159	1100	63.0	80.5						
Annealed	-100	-73	90	621	144	994	70.5	81.0						
As-Rolled	70	21	97	670	131	903	42.3	84.3						
Annealed	70	21	70	480	113	777	50.1	85.3						
As-Rolled	400	204	75	519	106	728	35.6	81.6						
Annealed	400	204	51	350	93	640	40.6	80.4						

Annealed 1950°F (1066°C) for 1 hour and water quenched.

Standard 0.250" (6.4 mm) gage diameter tensile specimens.

RR Moore Rotating Beam Fatigue Tests – Carpenter 2205 Stainless

0.5" (12.5 mm) diameter rebar

	Hot Rolled	Condition	Annealed Condition			
Test 9	Stress	Cycles to	Tes	t Stress	C	
ksi	MPa	Fracture	ksi	MPa	Cycles to Fracture	
40	276	1.5 x 10 ⁷ (NF)	35	242	2.1 x 10 ⁷ NF	
50	50 345 1.3 x 10 ⁷ (NF)		50	345	1.3 x 10 ⁷ NF	
60	414	1.4 x 10 ⁷ (NF)	60	414	1.4 x 10 ⁷ NF	
70	483	1.4 x 10 ⁷ (NF)	65	449	1.2 x 10 ⁷ NF	
80	552	2.6 x 10 ⁷ (NF)	67.5	466	1.3 x 10 ⁵	
90	621	3.7 x 10 ⁴	70	483	1.2 x 10⁵	

Annealed 1950°F (1066°C) for 1 hour and water quenched. NF indicates test was terminated without specimen fracturing. Standard 0.250" (6.4 mm) gage diameter fatigue specimens.

Endurance Limit at 10⁷ cycles: 80 ksi (552 MPa) hot rolled condition. 65 ksi (449 MPa) annealed condition.

Typical Room Temperature Hot Rolled Mechanical Properties – Carpenter 2205 Stainless

Samples were full-section rebar

Bar Size		Rebar		0.2% Yield Strength		Tensile ngth	% Elongation in	
in	mm	"	ksi	MPa	ksi	MPa	8" (203 mm)	
0.5	12.7	4	92.5 638		126	869	26.8	
0.625	15.9	5	90.5	624	126.5	873	29.7	
0.750	19.1	6	90.0	621	120.5	831	29.0	
1.250	31.8	10	86.0 593		120.0	828	28.3	
1.375	34.9	11	86.0	593	119.0	814	31.8	

Heat Treatment

Annealing

Heat to 1850/2050°F (1010/1121°C) and rapidly quench in water or air. Typical hardness as-annealed is HRC 20.

Hardening

Cannot be hardened by heat treatment. Can be hardened only by cold working.

Workability

Hot rolling and controlling the finishing temperature can strengthen Carpenter 2205 stainless bar. After hot rolling, bars are not annealed.

Hot Working

Heat uniformly to 2000/2100°F (1093/1149°C). Reheat as often as necessary. Cool forgings in air.

Cold Working

Cold working increases strength and hardness. Work hardening rate is lower than Type 304; however, the annealed strength is significantly higher.

Machinability

The machinability of Carpenter 2205 stainless generally has been between that of conventional Type 316 stainless and Carpenter 22Cr-13Ni-5Mn stainless.

The following chart includes typical machining parameters used to machine Carpenter 2205 stainless. The data listed should be used as a guide for initial machine setup only.

Typical Machining Speeds and Feeds - Carpenter 2205 Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning-Single-Point and Box Tools

Depth	ŀ	ligh Speed Tool	s		Carbide Tools (Inserts)			
of Cut	Tool			Tool	Speed	(fpm)	Feed	
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Uncoated Coated		
.150	T15	85	.015	C2	350	450	.015	
.025	M42	100	.007	C3	400	525	.007	

Turning-Cut-Off and Form Tools

	Tool M.	aterial		Feed (ipr)						
	High	Car-	Speed	Cut-O	ff Tool Wid	ith (Inches))	Form Tool	Width (Inc	hes)
١	Speed	bide	(fpm)	1/16	1,8	1/4	1/2	4	11/2	2
L	Tools	Tools		20	20	Ţ	1/2	'	172	
	M2		75	.001	.0015	.002	.0015	.001	.001	.001
L		C2	275	.004	.0055	.007	.005	.004	.0035	.0035

Rough Reaming

High Speed Carbide Tools				Feed (ip	r) Reamer	Diameter	(Inches)		
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1,8	1/4	1/2	1	11/2	2
M7	70	C2	90	.003	.005	.008	.012	.015	.018

Drilling

High Speed Tools									
Tool	Tool Feed (inches per revolution) Nominal Hole Diameter (inches)								
Material	Speed (fpm)	1/16	1.8	1/4	1/2	3,4	1	1 1/2	2
M7, M10	50-60	.001	.002	.004	.007	.010	.012	.015	.018

Die Threading

FPM for High Speed Tools								
Tool Material 7 or less, tpi 8 to 15, tpi 16 to 24, tpi 25 and up, tpi								
M1, M2, M7, M10	8-15	10-20	15-25	25-30				

Milling, End-Peripheral

Depth		High Speed Tools						Carbide Tools					
of Cut	Tool	Speed	Feed	Feed (pt) Cutter Diameter (n)				Speed	Feed (jpt) Calle	er Diame	der (In)	
(Inches)	Waterfal	(бреч)	1/4	1/2	3/4	1-2	Waterfal	(фен)	1/4	1/2	3/4	1-2	
.030	W2, W7	75	.001	.002	.000	.004	C2	270	.001	.002	.000	.005	

Tapping Broaching

	- 2				
High Speed Tools				High Speed Too	ols
	Tool Material	Speed (*pm)	Tool Material	Speed (fpm)	Chip Load (ipt)
	M1, M7, M10	12-25	M2, M7	15	.003

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50% and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Weldability

Carpenter 2205 stainless has been welded using many of the standard electric arc welding processes. Autogeneous welding will increase the amount of ferrite present in the weldement and heat affected zone. When a filler metal is required, consider AWS E/ER 209.

Oxyacetylene welding is not recommended, because carbon pickup in the weld may occur.

Postweld annealing is not required for most applications, but will provide optimum properties for severe service.

Other Information

Applicable Specifications	
ASME SA479	 ASTM A240
 ASTM A276 	 ASTM A479
ASTM A955M	• BS 6744: 2001

NACE MR0175

Forms Manufactured						
Bar-Rounds	Billet					
Rebar or (Bar-Reinforcing)	Strip					
Wire	Wire-Rod					

Technical Articles

• Stainless Steel Rebar For Concrete Reinforcement: An Update And Selection Guide

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.

Copyright 2004 CRS Holdings Inc. All rights reserved.

Edition Date: 12/22/03

Contact our <u>U.S. Sales Office</u> or one of our <u>International Sales Offices</u> for more information.

Visit us on the web at www.cartech.com