

Richard Huza, P. Eng. Director, Business Development

The durability and service life benefits of Stainless Steel Rebar and the underpinning properties and features – A stainless industry primer for owner's, planners, specifiers, and designers on the technical and market realities

Corroding Infrastructure

Corroding Infrastructure

Corroding Infrastructure

Some Abbreviations

- SSR >> Stainless Steel Reinforcement
- CRR >> Corrosion Resistant Reinforcement
- DOT >> Department of Transportation
- FHWA >> Federal Highways Administration (U.S.)
- LCC >> Life Cycle Cost

ASTM A955 Overview

- SSR deformed and smooth
- Various chemical compositions
- 2304, 2205, XM-28, 2101, 316LN and others
- Weldable material
- Bend diameters, dimensional profiles same as conventional bars
- The steel is mill-pickled in acid to provide optimal corrosion resistance
- Yield (min) of 60 & 75 ksi (0.2% offset) (420, 520) moving to 80 ksi
- Elongation min of 20% in 8" (actual >30%)
- Mandatory corrosion tests, e.g. macrocell test

Unique Mechanical and Other Properties

Mechanical	Other	
High strength rebar at 520 Mpa moving to 550 Mpa	Excellent low temperature properties	
Modulus of Elasticity is within 3% of mild steel	Fire and heat resistant	
Yield is calculated by the 0.2% offset method	Low magnetic permeability (austenitic)	
Exceptional ductility >> 20%	Excellent bond with concrete	
	Easily machined and welded	

Leveraging Mechanical / Other Properties

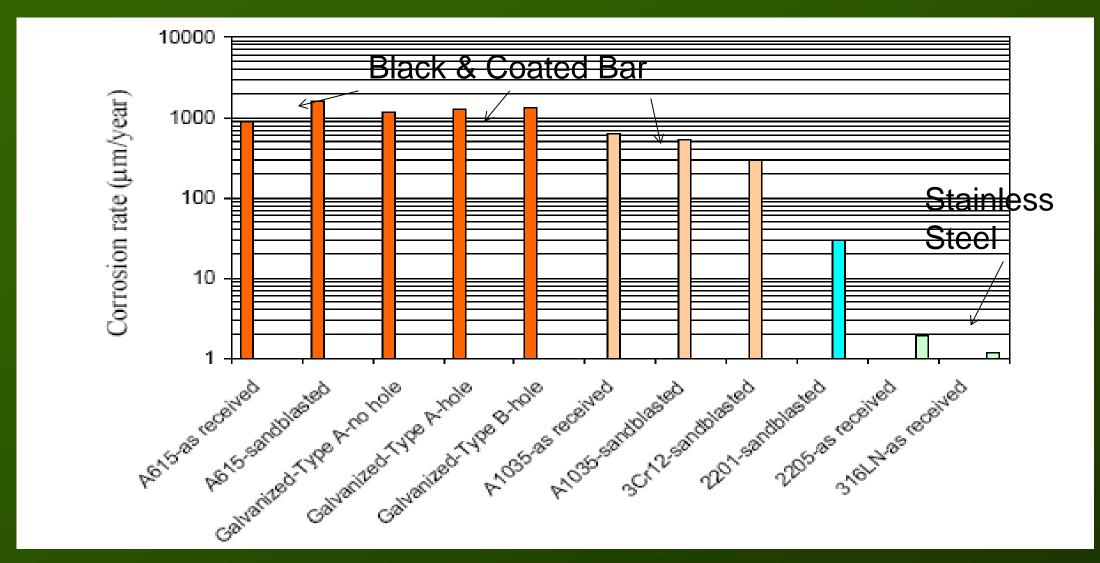
- The structural design concepts follow those of mild steel
- The development lengths and splice lengths follow conventional steel
- High strength steel >> a potential to reduce steel
- Ideal for seismic and shock applications
- Suitable for low and high temperature environments
- Used in applications where reduced magnetic interference is specified
- Bars can be easily connected/welded to extend lengths or form complex shapes

Chemical Composition Commonly used Alloys (%)

UNS # Type	32304 "2304"	24100 "XM-28"	31803 "2205"	31653 "316ln"
Nickel	3 - 5.5	0.5 - 2.5	4.5 - 6.5	10 - 14
Chromium	21.5 - 24.5	16.5 - 19	21 - 23	16 - 18
Molybdenum	.05 - 0.6		2.5 - 3.5	2 - 3
Manganese	2.5	11 - 14	2	2
Carbon	0.03	0.15	.03	.03max
Total Alloys (incl other)	28-34	29-37	31-36	31-38

Corrosion Resistance (CR)

- The science shows that SSR has far superior corrosion resistant properties
- Chemistry matters, alloyed bars are the future
- Coatings are fragile, costly to field repair and are prone to degradation
- Low alloy products provide poor corrosion resistance
- There are substantial differences in the CR of the various types of steel rebar
- Composite rebar has limited track record, and is a degradable material



Representative Corrosion Research

- The 2009 FHWA study concluded that <u>only SSR</u> can confidently provide a service life of 75 to 100 years
- In an ACI journal simulating bridge decks, the average <u>time to corrosion</u> of black and galvanized steel was 2.3 and 5 years. SSR did not corrode during the test period
- In macrocell testing, XM-28 out performs a low alloy non-stainless bar by 80 times
- In salt spray testing, SSR is a minimum of 600 times more resistant (see graph)

Corrosion Rate Comparison

Initial Cost Reduction Benefits due to Chemistry

- Reduction in concrete cover initially meant to protect black steel
- Less cover = less concrete cost, and more "live load" capacity
- New York and Michigan DOT's specify reduced cover with stainless
- Less cover is associated with smaller crack widths
- Lighter structures are more seismically efficient
- Stainless is unaffected by deck cracking >> hence, membranes, deck sealants, concrete additives are "belts and suspenders"
- Reduces field QA burden associated with coated rebar

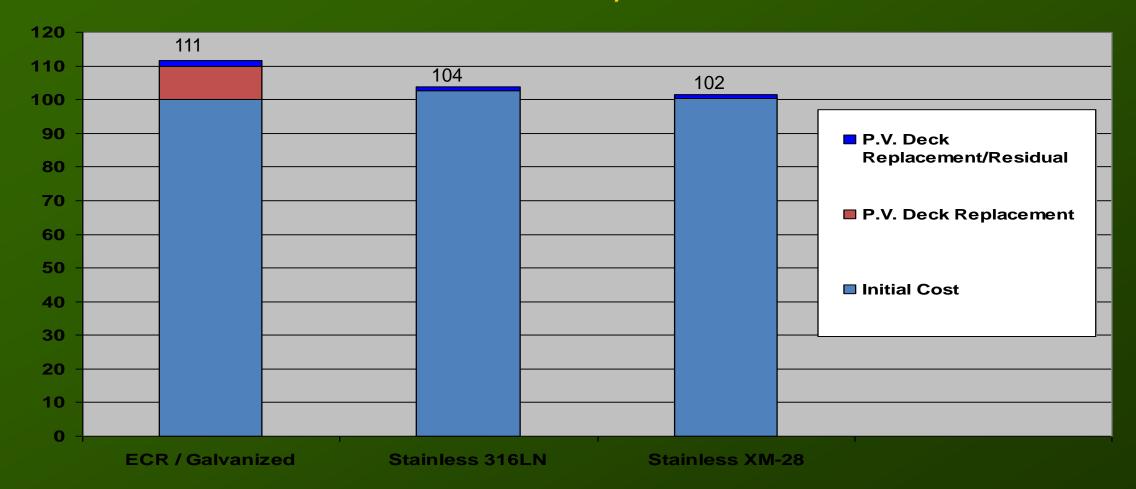
Long Term Cost Reduction due to Chemistry

- Dramatic service life extension
- Reductions in repairs and maintenance
- Reduction in Owners' need for future capital
- Reduction in traffic congestion, hence user costs
- More effective infrastructure utilization = Economic spinoffs

LCC: New York State DOT case study

- LCC measures long term cost effectiveness
- NYSDOT concluded that with SSR the LCC for a <u>bridge deck rehabilitation</u> was 20% less
- For a <u>new bridge structure</u> it was almost 10% less
- The lower LCC is due to better rebar chemistry, better concrete durability which reduces future structure repair costs
- The initial cost to use SSR is < 1% for new structures
- These results are substantial and compelling

Total Deck Cost After 100 Years


Index: Initial Cost of ECR / Galvanized = 100

Total Interchange Cost After 100 years

Index: Initial Cost of ECR / Galvanized = 100

Track record of field success

- Functioning pier built 75+ years ago (1937) with stainless steel in Progreso, Mexico
- The Gulf of Mexico is a very harsh environment
- Still has an additional25 year life expectancy

Pricing/Quality Realities

- SSR prices have declined dramatically
- Product Price and Quality are directly related ... Price Quality
- Cheaper rebar = less quality, less durability, reduced service life, higher repair costs and bridge downtime with higher user costs
- Owners' overall costs decline with more effective rebar
- SSR may cost more but it WORKS!

Owners' use of SSR Strategic Highways / Heavy traffic

- Owners are allocating better performing CRR to their <u>more strategic and busiest</u> <u>roadways</u>
- There are many examples of this practice two are the Virginia and Vermont DOT's
- Virginia mandates SSR on all roadway classes giving an option only for "Rural and Collector Local Roads"
- Vermont mandates SSR everywhere but allows coated bar for "Unpaved Roads" with limited traffic volume and a 30 year life

Where is SSR used

- Highway Infrastructure
 - Decks and deck panels
 - Barrier walls, curbs, sidewalks, medians, expansion joints
 - Approach slabs and wing walls
 - Dowels
- Marine/Coastal Infrastructure and Structures
- Hospitals (MRI's)
- Naval

Snapshot of Major Projects

• The increase in interest by Owners and engineers is evidenced by the increasing scale in project size across North America

Project	Owner	SSR [tonnes]	SSR Type
Champlain	Canada	15,000	2304
Stillwater	MN DOT	5,400	2304
Hoan	Wis DOT	4,500	2304
Bonner	NC DOT	2,700	XM-28
Pulaski	PANYNJ	2,100	XM-28
Gardiner	Toronto	5,000+	2205
Calgary RR	AB DOT	5,000	2304

Material Availability

- There is ample product supply
- Three mills are producing SSR in the U.S.
- There are also various international producers of SSR
- The current capacity to produce SSR vastly exceeds current demand

Summary

- Owners need cost effective durability solutions for infrastructure exposed to chlorides
- SSR is the primary bar used in moderate to high risk zones of chloride attack for structures that are strategically important and/or with high traffic volumes
- It is designed to provide superior chloride resistance extending service life
- Ensures the least LCC by substantially reducing future repairs and maintenance –
 the benefits of using SSR substantially exceed the costs
- Traffic congestion is reduced increasing roadway throughput = economic benefits
- There are cost reductions associated with cover, deck protection, concrete design, high yield strength
- Track record of Progreso, i.e. 75+ yr. service life in a very high chloride application
- The usage of SSR has gone "mainstream"

Thank You

Salit Specialty Rebar Buffalo, New York

Richard Huza, P. Eng.

514-208-5335

Rhuza@SalitSteel.com

www.stainlessrebar.com

